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In recent years, optimizing the design of photonic structures has become a key area of nanophotonic research. Traditional
methods like shape optimization and topology optimization each have their advantages, but also limitations. Shape opti-
mization is fast and easy to manufacture but struggles with achieving the best possible performance, especially for complex
designs. Topology optimization, on the other hand, can create more innovative designs but often results in structures that
are hard to fabricate. In this work, we propose, to our knowledge, a new method that combines the best features of both
shape and topology optimization. We apply this method to design photonic devices like gratings, which are used in many
optical applications. To make the process more efficient, we construct backpropagation in nanophotonic structures
inspired by neural networks. This allows us to quickly calculate the gradients of the parameters, speeding up the optimi-
zation process. We design a highly efficient blazed grating and a polarization beam splitter (PBS) using our method. Better
results are achieved than the previous, including finding the structure with high first-order performance over a broader
spectrum and improving the performance of the PBS from 96% to 98.8%. By reducing optimization time from over 11,000 h to
just 38 h, our method opens up new possibilities for faster and more efficient optical designs.
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1. Introduction

Driven by the growing demand for advanced photonic devices,
optical inverse design has established itself as a critical engineer-
ing paradigm that bridges computational optimization with
nano-fabrication capabilities[1,2]. The goal of optical inverse
design is to use optimization algorithms to generate structures
with desired optical responses[3,4]. Different types of optical
inverse design methods and optimization algorithms, with their
own advantages and restrictions, are employed for feasible and
reliable designs according to the specific requirements of differ-
ent applications[5–9].
Optical inverse design can be categorized into two types: shape

optimization and topology optimization approaches[10–12].
Shape optimization employs geometric primitives (e.g., triangles,

cylinders, and rectangles) as building blocks, achieving target
optical responses through adjustments of critical parameters
(width, height, position, and diameter). The parametric nature of
this approach naturally lends itself to gradient-based optimiza-
tion, where analytic differentiation directly calculates parameter
sensitivities while inherently preserving geometric manufactur-
ability constraints. This results in computationally efficient solu-
tions within low-dimensional design spaces, accompanied by
human-interpretable geometries that facilitate fabrication[13–15].
However, shape optimization can be cumbersome when design-
ing for large bandwidth applications, discovering structures that
approach theoretical performance limits, or finding novel opti-
cal responses[16]. In contrast, topology optimization adopts a
material distribution paradigm, discretizing the design domain
into pixels where each grid point continuously varies material
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composition between two candidate dielectrics[17–19]. To navi-
gate the exponentially growing design space (often exceeding
104 variables) in topology optimization, an adjoint-based
method has emerged as the essential framework, leveraging
dual electromagnetic field solutions to compute all material gra-
dients in a single computation cycle. This representation enables
unprecedented design freedom, generating intricate, non-
intuitive patterns that may achieve theoretical performance lim-
its. However, topology optimization still faces challenges: since
the optimized structure is represented as a pixelated image, it
may contain internal holes or isolated islands. Some of these fea-
tures can be difficult to process.
To leverage the strengths of both approaches, combining top-

ology optimization with shape optimization could be a promis-
ing solution. Taking a grating design as an example, we can
divide the grating structure into hundreds of layers, with each
layer composed of a simple shape, such as a rectangle. The over-
all model then becomes a topology optimization problem, where
new structures are generated by continuously adjusting the
parameters of each layer. The hundreds of parameters provide
the flexibility needed to fine-tune the performance. For each
layer, shape optimization can be applied by adjusting only the
width, height, and position of the rectangle, which helps avoid
the issue of internal holes and isolated islands within the struc-
ture. For the optimization algorithm, inspired by the success of
neural network backpropagation, we construct the backpropa-
gation in nanophotonic structures, and draw a parallel between
multilayer nanophotonic structures and multilayer neural net-
works[19–21]. Incident light fields, as inputs to the nanophotonic

structures, propagate through each layer according to the trans-
fer matrix method. Transfer matrices describe the light propa-
gation between two neighboring layers, analogous to the weights
and activation functions in neural networks. This analogy allows
us to optimize the parameters of the simple shapes in each layer
of the nanophotonic structure through a backpropagation proc-
ess, similar to how neural networks are trained.
In this work, we propose a topology optimization algorithm

combined with shape optimization, which takes advantage of the
strengths of both approaches. Additionally, based on Maxwell's
equations, we construct a backpropagation process for nano-
photonic structures to accelerate the optimization. As a practical
example, we apply our proposed algorithm to grating design.
First, we design a large-bandwidth blazed grating with high effi-
ciency from the ultraviolet to near-infrared spectral regions.
Next, we optimize a grating used as a polarization beam splitter
(PBS), achieving a polarizing separation efficiency of 98.8%,
which is higher than the previously reported value of 96%.
Finally, we use shape optimization to further improve perfor-
mance and determine the critical parameters of each structure.

2. Results

2.1. Backpropagation of nanophotonic structures

Figure 1(a) shows the analogy between a nanophotonic structure
and the corresponding neural network. For the nanophotonic
structure, the incident light is decomposed into several

(a) (b)

(c)

Fig. 1. Analogy between nanophotonic structures and neural networks. (a) In nanophotonic structures, eigenmodes propagate independently within the bulk
layer, while they are coupled at the interfaces between neighboring layers. In neural networks, data flow independently through each neuron, with neighboring
neurons connected by weighted connections that couple the data. (b) The forward computation process in nanophotonic structures and neural networks. (c) The
backpropagation process in nanophotonic structures and neural networks.
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eigenmodes in each layer. Each eigenmode propagates independ-
ently within the bulk layer, with its phase changing as it travels.
These eigenmodes are coupled together at the interface between
adjacent layers[22]. Similarly, in neural networks, the data of each
channel propagate independently through the neurons, and the
outputs of neighboring neurons are coupled through weight con-
nections. In this analogy, a “bulk layer” refers to a homogeneous
material region aligned along the light propagation direction (typ-
ically the z-axis), characterized by distinct optical properties
(e.g., refractive index and thickness) and physical dimensions
comparable to the wavelength of light. To reduce the compu-
tational time required for optimization, the backpropagation
process is constructed based on the analogue between the nano-
photonic structure and the neural network. A side-by-side com-
parison of the two is shown in Figs. 1(b) and 1(c). The left panels
in Figs. 1(b) and 1(c) display the interfaces and eigenmodes
of each layer in the nanophotonic structures, while the right
panels show the corresponding weight connections, neurons,
input data, and output data in the neural network. For the nano-
photonic structure,Ψi−1 = �ψ1

i−1,ψ
2
i−1, · · · ,ψ

m
i−1�T represents the

eigenmodes of the upper layer at the ith interface, and Φi =
�ϕ1

i ,ϕ
2
i , · · · ,ϕ

m
i �T represents the eigenmodes of the lower layer

at the ith interface. For the neural network, Xi−1 =
�x1i−1, x2i−1, · · · , xmi−1�T represents the input to the ith weight con-
nection, and Yi = �y1i , y2i , · · · , ymi �T represents the output of the
ith weight connection.
For the propagation of light at the interface of nanophotonic

structures, the eigenmodes of neighboring layers couple and
redistribute. The eigenmode Ψi−1 of the upper layer is related
to the eigenmodeΦi of the lower layer by the transfer matrix Ti:
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The transfer matrix T between neighboring layers is deter-
mined by the boundary conditions of the electromagnetic
field[23,24]. Similarly, in the propagation of data through the
weight connections in neural networks, the data from different
neurons in neighboring layers are coupled and redistributed.
The output data Yi of the weight connection is related to its
input data Xi−1 by the weight matrix Wi:
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For the propagation of light through the bulk layer of nano-
photonic structures, each eigenmode Φi propagates independ-
ently. A phase shift is applied to each eigenmode within the

layer. The eigenmode Ψi on the downward side is related to
the eigenmodeΦi on the upward side by the propagation matrix
Pi, which is diagonal and manipulates the phase of each eigen-
mode independently:
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The propagationmatrix Pi is diagonal, with each element rep-
resenting a phase factor:

Pi =

2
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Similarly, in neural networks, the activation functionF �Yi� is
applied independently to each neuron[25]. The output data Xi of
the neurons are related to the input data Yi by2
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where the activation function F �Yi� is applied element-wise,
resulting in a diagonal matrix.
The comparison above shows that the propagation behavior

of light in nanophotonic structures is analogous to the propaga-
tion of data in neural networks. By analogy with the backpropa-
gation process in neural networks, a similar backpropagation
process can be established for nanophotonic structures. If the
mean squared error is used as the loss function L to evaluate
the difference between the output and the target, the backpro-
pagation process begins by calculating the gradient of the loss
function. Using the chain rule, the gradients of the parameters
in each layer can then be calculated in turn.
For the backpropagation of data in neural networks, the gra-

dient of Yi is related to the gradient of Xi by the derivative of the
activation function ∂L

∂Yi
:
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Similarly, for the backpropagation of light in the nanopho-
tonic structure, the gradient of the eigenmode Φi is related to
the gradient of Ψi by the propagation matrix Pi:
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For the backpropagation of data in the weight connections of
neural networks, the gradient of Yi is related to the gradient of
Xi−1 by the transposed weight matrix WT

i :
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In the same way, for the backpropagation of light in the nano-
photonic structure, the gradient of the eigenmode Ψi−1 in the
upper layer is related to the gradient of Φi in the lower layer
by the transposed transfer matrix TT

i :
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Then, the gradient is propagating through the nanophotonic
structures. The gradients of the shape parameters in each layer
could be obtained for the optimization process.

2.2. Inverse design of blazed gratings

Figure 2 shows the optimization process of a blazed grating. The
goal of optimization is to find a new structure with high first-
order diffraction efficiency over the range from 200 to
900 nm, while minimizing the diffraction efficiency of other
orders. This enables the blazed grating to be used over a broad
spectrum and reduces the impact of stray light. To achieve this,
the loss function L is given by

L =
X900
i=200

�f −2i − 0�2 �
X900
i=200

�f −1i − 1�2 �
X900
i=200

�f 0i − 0�2

�
X900
i=200

�f 1i − 0�2 �
X900
i=200

�f 2i − 0�2, (10)

where f −2i , f −1i , f 0i , f
1
i , and f 2i are the −2nd-order, −1st-order,

0th-order, 1st-order, and 2nd-order diffraction efficiencies of
grating at wavelength i. A triangular grating is chosen as the ini-
tial structure, which is divided into 100 layers as shown in Fig. 2
(a). Each layer consists of a rectangular shape with optimizable
parameters such as width, height, and position. The initial struc-
ture exhibits high 1st-order diffraction efficiency at the blazed
wavelength of 420 nm, but the 1st-order diffraction efficiency
quickly decreases in the ultraviolet and near-infrared ranges.
At wavelengths of 200 and 900 nm, the 1st-order diffraction
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Fig. 2. Optimization process of the blazed grating. The loss functions L of the optimization with backpropagation (black line) and without backpropagation (gray
line) are shown in the upper panel. The convergence speed of optimization processes without backpropagation is significantly lower than that with backpro-
pagation. The corresponding optimized structures and spectra at different stages are shown. (a) The initial structure for blazed grating optimization is shown in
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inset, and the gray lines represent the diffraction efficiency of the optimized structures.
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efficiency of the initial structure is only 0.006 and 0.354,
respectively.
During the optimization process, the loss function L contin-

uously decreases, as shown in Fig. 2. The optimization is com-
pleted in 38 h, aided by backpropagation for nanophotonic
structures. (For comparison, the optimization process without
backpropagation would have taken 11,400 h.) The initial and
optimized structures and their optical responses are shown in
Fig. 2. In terms of structure, there are no internal holes or iso-
lated islands due to the optimization of each layer's shape. A
novel structure, with improved performance compared to
the triangular grating, is discovered. This structure is recognized
as a dual-blazed grating, which has been previously reported to
achieve broadband diffraction efficiency. Our optimization
algorithm rediscovers this structure through the optimization
process. In terms of the optical response, the 1st-order diffrac-
tion efficiency is improved in the ultraviolet and near-infrared
ranges, while the 0th-order and 2nd-order diffraction efficien-
cies decrease during the optimization. The first-order diffraction
efficiency of the final optimized structure at 200 and 900 nm
increases to 0.25 and 0.50, respectively, compared to the initial
structure's parameters of 0.006 and 0.354. The 0th-order diffrac-
tion efficiency at 900 nm decreases from 0.5 to 0.25, and the 2nd-
order diffraction efficiency at 200 nm decreases from 0.7 to 0.2.
This shows that the final optimized structure provides high per-
formance over a broader spectrum.

2.3. Inverse design of PBSs

The PBS is used to divide incident light into two orthogonally
polarized beams. The most common type of PBS is based on
birefringent materials, multilayer thin films, and grating struc-
tures. Recently, a transmission PBS was designed and fabricated
using a deep-etched rectangular- and triangular-groove fused-
silica grating with high −1st-order diffraction efficiency for TE
polarization and high 0th-order diffraction efficiency for TM
polarization[26,27]. Different polarized light travelling through
the grating is assigned to a different diffraction channel. This
grating design demonstrates high efficiency (over 96%) across
the C+L band range for both TE and TM polarizations. In this
work, by applying the algorithm proposed, we aim to discover
new grating structures that exhibit higher diffraction efficiency
and a greater extinction ratio than previously reported rectan-
gular and triangular gratings. Figure 3 shows the optimization
process of the PBS. The loss function L is defined as

L =
X1620
i=1480

�f TM,0
i − 1�2 �

X1620
i=1480

�f TM,−1
i − 0�2

�
X1620
i=1480

�f TE,0i − 0�2 �
X1620
i=1480

�f TE,−1i − 1�2 (11)

where f TM;0
i and f TM,−1

i are the 0th-order and −1st-order dif-
fraction efficiencies for TM polarization, and f TE;0i and f TE,−1i
are the 0th-order and −1st-order diffraction efficiencies for
TE polarization.

After optimizing the grating structures, the loss function
decreases from 0.147 to 0.012. This indicates that the final opti-
mized grating achieves high efficiency (with diffraction effi-
ciency exceeding 98.8%) over the entire C+L band range. To
confirm the robustness of the results and their independence
from the initial structure, two different initial grating struc-
tures—rectangular and triangular—were selected for optimiza-
tion. Four different stages of the optimization process are shown
in Fig. 3. Despite starting with different initial structures and
optical responses, the final optimized gratings are nearly iden-
tical, and their loss function L converges to the same value of
0.012 after 100,000 optimization epochs.

2.4. Critical parameters

The optimized structures obtained using our proposed optimi-
zation algorithm exhibit two key features: shape transitions
(main features) and rough edges. To demonstrate that the
observed spectral changes are due to shape transitions rather
than the rough edges, we remodel the optimized structures
by preserving the main features and eliminating the rough-
ness, as shown in Fig. 4(a). The critical parameters—period a,
heights h1, h2, h3, and widths w1, w2, w3 —are defined for the
remodeled structures. We then apply shape optimization to
adjust these critical parameters. The corresponding loss func-
tions are shown in Fig. 4(b). The loss function converges
to the same values as those obtained with topology optimiza-
tion: 0.26 for the blazed grating and 0.013 for the PBS. This
demonstrates that similar performance can be achieved through
shape transitions alone, while retaining the key features. For
the blazed grating, the final optimized critical parameters are
as follows: period a = 1.6069 μm, heights h1 = 1.3258 μm, h2 =
0.3968 μm, h3 = 0.2624 μm, and widths w1 = 0.2704 μm, w2 =
0.2180 μm, w3 = 0.0868 μm. For the PBS, the final optimized
critical parameters are: period a = 0.9554 μm, heights h1 =
0.3380 μm, h2 = 1.1271 μm, h3 = 2.0518 μm, and widths w1 =
0.7591 μm, w2 = 0.3849 μm, w3 = 0.1557 μm.
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3. Methods

3.1. Implementation of the algorithm

A custom program is written in C language to implement the
algorithm, in favor of C language's speed. The entire framework
can be divided into three parts: linear algebra, simulation, and
optimization. The linear algebra module provides basic math-
ematical functions based on BLAS and LAPACK[28–30]. The sim-
ulation module is designed to construct the calculations and
backpropagation process for nanophotonic structures. The opti-
mization module uses the Adam algorithm to optimize these
nanophotonic structures[31].

3.2. Platforms for testing

To provide a fair performance comparison, we tested our home-
made program on a desktop computer equipped with an Intel
(R) Core(TM) i7–10700F CPU @ 2.90 GHz with 16 cores.
The task at hand was optimizing a blazed grating structure,
and the results showed significant performance improvements
when using backpropagation for nanophotonic structures.
With backpropagation of nanophotonic structures, the optimi-
zation process was completed in 38 h. Without backpropaga-
tion, the same optimization task required approximately
11,400 h—a dramatic difference in computational time.

3.3. Stochastic gradient descent

The optimization algorithm used in this work is the Adam algo-
rithm, belonging to a class of stochastic gradient descent algo-
rithms. Stochastic gradient descent computes the gradient
using only one random training example per iteration, and takes
noisy, high-variance steps based on the subset of data. It is faster
per-iteration computation, suitable for large-scale data, but may
exhibit oscillations or temporary increases in loss, as shown in

Fig. 2. The advantage of this optimization algorithm is that it is
not confined to local minima and can escape local minima dur-
ing the optimization process, continuously exploring the param-
eter space. At the same time, this alsomeans that its loss does not
decrease monotonically.

3.4. Backpropagation of the output layer

In transmission mode, the diffraction efficiencies f i of each
order i are defined as the ratio of the power flux Si of each order
to the incident power flux Sinc:

f i =
Si
Sinc

: �12�

According to the power flux calculation formula[37], we can
derive the relationship between the power flux Si and the trans-
mission coefficient ti:

Si = Re

�
t†i kpn

ti
qnω

�
, (13)

where t†i is the conjugate transpose of ti, kpn is the matrix of the
eigen equation for calculating the eigenmodeΦn in output layer
n, qn is the eigenvalue of eigenmode Φn in the output layer (the
z-component of the wave vector of the eigenmode in the output
layer), and ω is the angular frequency of the light.
For backpropagation, first, we can propagate the partial deriv-

atives from ∂L
∂f i

into the power flux ∂L
∂Si
:

∂L
∂Si

=
∂L
∂f i

1
Sinc

: �14�

Then, the derivatives in the power flux Si are extended to the
transmission coefficient ti, eigenvalues qn, and eigenmatrix kpn:
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The transmission coefficients ti are computed via the scatter-
ingmatrix or transfer matrix. Subsequently, through backpropa-
gation, the partial derivatives ∂L

∂ti
can be propagated to the

scattering matrix or transfer matrix and further propagated to
structural parameters.

4. Discussion

We propose an optimization method that combines topology
and shape optimization. Specifically, we apply this approach
to grating design, where we divide the structure into multiple
layers, each composed of simple shapes (e.g., rectangles). To
make the process more efficient, we construct backpropagation
in nanophotonic structures inspired by neural networks.
We demonstrate the effectiveness of our method through two

case studies: the design of a large bandwidth blazed grating
and a PBS. For the blazed grating, our approach achieves high
diffraction efficiency across the ultraviolet to near-infrared spec-
trum. For the PBS, we optimize a grating to achieve a polarizing
separation efficiency of 98.8%, surpassing previous reports
of 96%. The optimization process is significantly accelerated

by our backpropagation method, reducing the computation
time from 11,400 h to just 38 h for the blazed grating design.
Additionally, we use shape optimization to fine-tune the designs
and extract critical parameters for each structure.
Our results demonstrate that combining topology and shape

optimization with backpropagation can produce highly effi-
cient, novel photonic structures in a fraction of the time tra-
ditionally required. This method holds significant potential
for advancing optical design in a variety of applications, with
potential for scalability and further optimization in complex
nanophotonic systems[32,33]. For optical metrology and 3D
printing, our method can be applied to the reconstruction of
the multilayer photonic crystal and layered patterned struc-
tures[34]. The design approach could also be extended to the
antenna design[35,36]. Newly shaped nano-antennas without
pixelated internal holes or isolated islands could be found
through our method.

4.1. Selection criteria for the number of layers

The selection criteria for the number of layers consist of two
steps. Start by optimizing a simple shape, adjusting its structural
parameters such as the length and width of a rectangle, until the
loss can no longer be reduced. Then, without altering the overall
shape, split it into two smaller shapes, for example, dividing a
rectangle into two smaller rectangles stacked vertically. Repeat
the two steps until the loss can no longer be decreased or the loss
meets the design requirements. A more practical example is
shown in Fig. 5, where we increase the number of points without
altering the polygon's shape.
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Fig. 5. Results of the optimized photonic crystal slab. The loss and structures in a unit cell during the optimization are shown in the upper panel. The optimization
target and the optimized optical response, the real part of Jones matrix elements rss within an incident angle range of 0°–25°, and a full azimuthal range of 0°–360°
are shown in the lower panel.
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4.2. Full three-dimensional optimization

We optimized an arbitrary polygonal structure within a unit cell
for a photonic crystal slab. Some scattered points in the unit cell
are connected counterclockwise to form the polygon, and our
backpropagation algorithm ultimately propagates the deriva-
tives to the coordinates of these points. This allows us to update
the positions of these points in each iteration, thereby achieving
the evolution of the polygon. During the optimization process,
we can increase the number of points without altering the poly-
gon's shape, thereby adding more degrees of freedom for opti-
mization and enabling continuous improvement, leading to a
steady decrease in loss, as shown in Fig. 5. Therefore, our
method is applicable not only to layered patterns along the
z-axis but also to non-layered patterns within the x–y plane, ena-
bling full three-dimensional optimization.
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